
C O M P U T E | S T O R E | A N A L Y Z E

Cray Reveal Webinar: A Tool to Help
Porting to Manycore

Heidi Poxon

Technical Lead & Sr. Manager, Performance Tools

Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are

based on our current expectations. Forward looking statements

may include statements about our financial guidance and expected

operating results, our opportunities and future potential, our product

development and new product introduction plans, our ability to

expand and penetrate our addressable markets and other

statements that are not historical facts. These statements are only

predictions and actual results may materially vary from those

projected. Please refer to Cray's documents filed with the SEC from

time to time concerning factors that could affect the Company and

these forward-looking statements.

 Safe Harbor Statement

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

Future Architecture Directions

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
3

● Nodes are becoming more parallel
● More processors per node

● More threads per processor

● Vector lengths are getting longer

● Memory hierarchy is becoming more complex

● Scalar performance is not increasing and will start decreasing

● For the next decade, HPC systems will have the same
basic architecture:
● Message passing between nodes

● Multithreading within the node (pure MPI will not do)

● Vectorization at the lowest level (SSE, AVX, GPU, Phi)

C O M P U T E | S T O R E | A N A L Y Z E

Future Application Directions

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
4

● Threading on node as well as vectorization is becoming
more important – need more parallelism exploited in
applications due to increasing number of cores and
threads

● Current petascale applications are not structured to take
advantage of these architectures
● Currently 80-90% of applications use a single level of parallelism

● MPI or PGAS between cores of the MPP system

● Looking forward, application developers are faced with a significant
task in preparing their applications for the future
● Codes must be converted to use multiple levels of parallelism

● More complex memory hierarchies will require user intervention to achieve
good performance

C O M P U T E | S T O R E | A N A L Y Z E

Three Levels of Parallelism Required

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
5

1. Developers will continue to use MPI between nodes or
sockets

2. Developers must address using a shared memory
programming paradigm on the node

3. Developers must vectorize low level looping structures

While there is a potential acceptance of new languages for
addressing all levels directly. Most developers cannot afford
this approach until they are assured that the new language
will be accepted and the generated code is within a
reasonable performance range

C O M P U T E | S T O R E | A N A L Y Z E

When to Move to a Hybrid Programming Model

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
6

● When code is network bound
● Look at collective time, excluding sync time: this goes up as network

becomes a problem

● Look at point-to-point wait times: if these go up, network may be a
problem

● When MPI starts leveling off
● Too much memory used, even if on-node shared communication is

available

● As the number of MPI ranks increases, more off-node communication
can result, creating a network injection issue

● When contention of shared resources increases

● When you want to exploit heterogeneous nodes

C O M P U T E | S T O R E | A N A L Y Z E

Approach to Adding Parallelism

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
7

1. Identify key high-level loops
● Determine where to add additional levels of parallelism

● Assumes MPI application is functioning correctly on X86
● Find top serial work-intensive loops (perftools + CCE loop work estimates)

2. Perform parallel analysis, scoping and vectorization

● Split loop work among threads
● Do parallel analysis and restructuring on targeted high level loops
● Use Reveal + CCE for scoping, loopmark and source browsing

3. Add OpenMP layer of parallelism

● Insert OpenMP directives (with Reveal directive building assistance)
● Run on X86 to verify application and check for performance improvements

4. Analyze performance for further optimizations,
specifically vectorization of innermost loops

C O M P U T E | S T O R E | A N A L Y Z E

Challenges

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
8

● Investigate parallelizability of high level looping structures

● Often times one level of loop is not enough, must have
several parallel loops
● Need a large number of loop iterations to feed the GPU threads

● User must understand which high level DO loops have
independent iterations

● Without tools, variable scoping of high level loops is very
difficult
● Loops must be more than independent, their variable usage must adhere

to private data local to a thread or global shared across all the threads

● Independence can be complicated to understand (and even runtime
dependent)

● Investigate vectorizability of lower level DO loops

C O M P U T E | S T O R E | A N A L Y Z E

The Problem – How Do I Parallelize This Loop?

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
9

● How do I know this is a good loop to parallelize?

● What prevents me from parallelizing this loop?

● Can I get help building a directive?

subroutine sweepz

…

do j = 1, js

 do i = 1, isz

 radius = zxc(i+mypez*isz)

 theta = zyc(j+mypey*js)

 do m = 1, npez

 do k = 1, ks

 n = k + ks*(m-1) + 6

 r(n) = recv3(1,j,k,i,m)

 p(n) = recv3(2,j,k,i,m)

 u(n) = recv3(5,j,k,i,m)

 v(n) = recv3(3,j,k,i,m)

 w(n) = recv3(4,j,k,i,m)

 f(n) = recv3(6,j,k,i,m)

 enddo

 enddo

 …

 call ppmlr

 do k = 1, kmax

 n = k + 6

 xa (n) = zza(k)

 dx (n) = zdz(k)

 xa0(n) = zza(k)

 dx0(n) = zdz(k)

 e (n) = p(n)/(r(n)*gamm)+0.5 &

 *(u(n)**2+v(n)**2+w(n)**2)

 enddo

 call ppmlr

…

 enddo

enddo

subroutine ppmlr

call boundary

call flatten

call paraset(nmin-4, nmax+5, para, dx, xa)

call parabola(nmin-4,nmax+4,para,p,dp,p6,pl,flat)

call parabola(nmin-4,nmax+4, para,r,dr,r6,rl,flat)

call parabola(nmin-4,nmax+4,para,u,du,u6,ul,flat)

call states(pl,ul,rl,p6,u6,r6,dp,du,dr,plft,ulft,&

 rlft,prgh,urgh,rrgh)

call riemann(nmin-3,nmax+4,gam,prgh,urgh,rrgh,&

 plft,ulft,rlft pmid umid)

call evolve(umid, pmid)  contains more calls

call remap  contains more calls

call volume(nmin,nmax,ngeom,radius,xa,dx,dvol)

call remap  contains more calls

return

End

C O M P U T E | S T O R E | A N A L Y Z E

Simplifying the Task with Reveal

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
10

● Navigate to relevant
loops to parallelize

● Identify parallelization
and scoping issues

● Get feedback on issues
down the call chain
(shared reductions, etc.)

● Optionally insert parallel
directives into source

● Validate scoping
correctness on existing
directives

C O M P U T E | S T O R E | A N A L Y Z E

Using Reveal with Performance Statistics

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
11

Optionally create loop statistics using the Cray performance
tools to determine which loops have the most work

● Helps identify high-level serial loops to parallelize
● Based on runtime analysis, approximates how much work exists within

a loop

● Provides the following statistics
● Min, max and average trip counts

● Inclusive time spent in loops

● Number of times a loop was executed

C O M P U T E | S T O R E | A N A L Y Z E

Collecting Loop Work Estimates

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
12

● Load PrgEnv-cray module (must use CCE)

● Load perftools module

● Compile AND link with –h profile_generate
● cc –h profile_generate –o my_program my_program.c

● Instrument binary for tracing
● pat_build –w my_program

● Run application

● Create report with loop statistics
● pat_report my_program.xf > loops_report

pat_report produces

report plus .ap2 file

that can be used

with Reveal

C O M P U T E | S T O R E | A N A L Y Z E

Example Report – Inclusive Loop Time

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
13

Table 2: Loop Stats by Function (from -hprofile_generate)

 Loop | Loop | Loop | Loop | Loop |Function=/.LOOP[.]

 Incl | Hit | Trips | Trips | Trips | PE=HIDE

 Time | | Avg | Min | Max |

 Total | | | | |

|--

| 8.995914 | 100 | 25 | 0 | 25 |sweepy_.LOOP.1.li.33

| 8.995604 | 2500 | 25 | 0 | 25 |sweepy_.LOOP.2.li.34

| 8.894750 | 50 | 25 | 0 | 25 |sweepz_.LOOP.05.li.49

| 8.894637 | 1250 | 25 | 0 | 25 |sweepz_.LOOP.06.li.50

| 4.420629 | 50 | 25 | 0 | 25 |sweepx2_.LOOP.1.li.29

| 4.420536 | 1250 | 25 | 0 | 25 |sweepx2_.LOOP.2.li.30

| 4.387534 | 50 | 25 | 0 | 25 |sweepx1_.LOOP.1.li.29

| 4.387457 | 1250 | 25 | 0 | 25 |sweepx1_.LOOP.2.li.30

| 2.523214 | 187500 | 107 | 0 | 107 |riemann_.LOOP.2.li.63

| 1.541299 | 20062500 | 12 | 0 | 12 |riemann_.LOOP.3.li.64

| 0.863656 | 1687500 | 104 | 0 | 108 |parabola_.LOOP.6.li.67

C O M P U T E | S T O R E | A N A L Y Z E

How to Use Reveal

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
14

● Generate a program library for your application with CCE

● > cc –h pl=himeno.pl –hwp himeno.c

● > ftn –h pl=vhone.pl –hwp file1.f90

● Launch Reveal

● > module load perftools

● Use with compiler information only (no need to run program):
● > reveal vhone.pl

● Use with compiler + loop work estimates (include performance data)
● > reveal vhone.pl vhone_loops.ap2

Optionally add whole

program analysis for

more aggressive

inlining

C O M P U T E | S T O R E | A N A L Y Z E

Browse Source and Compiler Optimizations

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
15

C O M P U T E | S T O R E | A N A L Y Z E

Access Cray Compiler Message Information

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
16

Integrated

message

‘explain support’

Access integrated

message ‘explain’

support by right clicking

on message

C O M P U T E | S T O R E | A N A L Y Z E

Navigate Code via Compiler Messages

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
17

Default filter: Loops that

didn’t vectorize. Can

select other filters.

Choose “Compiler Messages”

view to access message filtering

C O M P U T E | S T O R E | A N A L Y Z E

View Pseudo Code for Inlined Functions

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
18

Search code

with Ctrl-F

Inlined call

sites marked

Expand to

see pseudo

code

C O M P U T E | S T O R E | A N A L Y Z E

Add Performance Data to Find Top Loops

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
19

C O M P U T E | S T O R E | A N A L Y Z E

View Loops through Call Chain

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
20

Loop

instances

Loop

traceback

C O M P U T E | S T O R E | A N A L Y Z E

Scope Top Time Consuming Loops

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
21

C O M P U T E | S T O R E | A N A L Y Z E

Include All Loops as Initial Candidates

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
22

C O M P U T E | S T O R E | A N A L Y Z E

Include All Loops as Initial Candidates (2)

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
23

C O M P U T E | S T O R E | A N A L Y Z E

Apply Filter to Select Only Top Loops

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
24

C O M P U T E | S T O R E | A N A L Y Z E

View Scoping Results

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
25

Right click on loop

to add it to list of

loops to scope

C O M P U T E | S T O R E | A N A L Y Z E

Reveal Gives Feedback on Scoping Results

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
26

Variable from

inlining – hover

over ‘I’ to see what

symbol means

See where

variable came

from

(@function_name)

C O M P U T E | S T O R E | A N A L Y Z E

Reveal Points Out Parallelization Issues

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
27

Reveal identifies

shared reductions

down the call

chain

C O M P U T E | S T O R E | A N A L Y Z E

Generate Directive

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
28

Automatically

generate

OpenMP

directive

Reveal generates

example OpenMP

directive

C O M P U T E | S T O R E | A N A L Y Z E

Optionally Insert Directive Into Source

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
29

C O M P U T E | S T O R E | A N A L Y Z E

Reveal Inserts Directive Into Source

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
30

! Directive inserted by Cray Reveal. May be incomplete.

!$OMP parallel do default(none) &

!$OMP& unresolved (dvol,dx,dx0,e,f,flat,p,para,q,r,radius,svel,u,v,w, &

!$OMP& xa,xa0) &

!$OMP& private (i,j,k,m,n,$$_n,delp2,delp1,shock,temp2,old_flat, &

!$OMP& onemfl,hdt,sinxf0,gamfac1,gamfac2,dtheta,deltx,fractn, &

!$OMP& ekin) &

!$OMP& shared (gamm,isy,js,ks,mypey,ndim,ngeomy,nlefty,npey,nrighty, &

!$OMP& recv1,send2,zdy,zxc,zya)

do k = 1, ks

 do i = 1, isy

 radius = zxc(i+mypey*isy)

 ! Put state variables into 1D arrays, padding with 6 ghost zones

 do m = 1, npey

 do j = 1, js

 n = j + js*(m-1) + 6

 r(n) = recv1(1,k,j,i,m)

 p(n) = recv1(2,k,j,i,m)

 u(n) = recv1(4,k,j,i,m)

 v(n) = recv1(5,k,j,i,m)

 w(n) = recv1(3,k,j,i,m)

 f(n) = recv1(6,k,j,i,m)

 enddo

 enddo

 do j = 1, jmax

 n = j + 6

 …

Reveal generates

OpenMP directive

with illegal clause

marking variables

that need addressing

C O M P U T E | S T O R E | A N A L Y Z E

Resolve Private Array Concerns for dvol, etc.

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
31

From file vh1mods.f90:

. . .

! module sweeps

!===

! Data structures used in 1D sweeps, dimensioned maxsweep (set in sweepsize.mod)

!--

use sweepsize

integer :: nmin, nmax, ngeom, nleft, nright ! number of first and last real zone

real, dimension(maxsweep) :: r, p, e, q, u, v, w ! fluid variables

real, dimension(maxsweep) :: xa, xa0, dx, dx0, dvol ! coordinate values

real, dimension(maxsweep) :: f, flat ! flattening parameter

real, dimension(maxsweep,5) :: para ! parabolic interpolation coefficients

real :: radius, theta, stheta

!$omp threadprivate(dvol,dx,dx0,e,f,flat,p,para,q,r,radius,theta,stheta,u,v,w,xa,xa0)

For OpenMP these need to be made task_private

C O M P U T E | S T O R E | A N A L Y Z E

Resolve Shared Reductions

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
32

hdt = 0.5*dt

do n = nmin-4, nmax+4

 Cdtdx (n) = sqrt(gam*p(n)/r(n))/(dx(n)*radius)

 svel = max(svel,Cdtdx(n))

 Cdtdx (n) = Cdtdx(n)*hdt

 fCdtdx(n) = 1. - fourthd*Cdtdx(n)

enddo

For OpenMP need to have a critical region around setting of svel

hdt = 0.5*dt

!$omp critical

do n = nmin-4, nmax+4

 Cdtdx (n) = sqrt(gam*p(n)/r(n))/(dx(n)*radius)

 svel = max(svel,Cdtdx(n))

 Cdtdx (n) = Cdtdx(n)*hdt

 fCdtdx(n) = 1. - fourthd*Cdtdx(n)

enddo

!$omp end critical

Original

Restructured – One Approach

C O M P U T E | S T O R E | A N A L Y Z E

Resolve Shared Reductions (Continued)

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
33

hdt = 0.5*dt

Svel0 = 0.0

do n = nmin-4, nmax+4

 Cdtdx (n) = sqrt(gam*p(n)/r(n))/(dx(n)*radius)

 svel0(n) = max(svel(n),Cdtdx(n))

 Cdtdx (n) = Cdtdx(n)*hdt

 fCdtdx(n) = 1. - fourthd*Cdtdx(n)

Enddo

!$omp critical

Do n = nmin-4, nmax +4

 Svel = max(svel0(n),svel)

Enddo

!$omp end critical

Original

Restructured – Better Approach

hdt = 0.5*dt

do n = nmin-4, nmax+4

 Cdtdx (n) = sqrt(gam*p(n)/r(n))/(dx(n)*radius)

 svel = max(svel,Cdtdx(n))

 Cdtdx (n) = Cdtdx(n)*hdt

 fCdtdx(n) = 1. - fourthd*Cdtdx(n)

enddo

C O M P U T E | S T O R E | A N A L Y Z E

Use Reveal to Validate User Inserted Directives

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
34

User inserted

directive with mis-

scoped variable ‘n’

C O M P U T E | S T O R E | A N A L Y Z E

VH1 – Astrophysics Code

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
35

● VH1 is written with high level loops and complex decision
processes.

● Ported to hybrid MPI + OpenMP using Reveal

● Reveal was able to identify
● storage conflicts

● private variables in modules

● reductions down the call chain that require critical regions

● Scoping was performed in seconds where it would have
taken weeks to get correct without Reveal

C O M P U T E | S T O R E | A N A L Y Z E

S3D - Structured Cartesian Mesh Flow Solver

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
36

● S3D, a pure MPI program, was converted to a hybrid multi-
core application suited for a multi-core node with or
without an accelerator.

● When the work was started, Reveal did not exist.

● Once Reveal was available, it was instrumental in
identifying bugs in the scoping of extremely large loops
(3000 lines of Fortran).

● There are both OpenMP and OpenACC versions of S3D
that run well on both OpenMP systems and on the Titan
Cray XK7 machine at Oak Ridge National Laboratory.

C O M P U T E | S T O R E | A N A L Y Z E

Summary

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
37

● Reveal can be used to simplify the task of adding OpenMP
to MPI programs

● Can be used as a stepping stone for codes targeted for
nodes with higher core counts and as the first step in
adding OpenACC to applications to for execution on GPUs

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use
codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the
sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other
countries: CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray
Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX,
LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model
number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered
trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds,
owner of the mark on a worldwide basis. Other trademarks used in this document are the property of their
respective owners.

Copyright 2014 Cray Inc.

NERSC Cray Reveal Training, Sept. 2014 Copyright 2014 Cray Inc.
38

